Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations, by Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, Yee Whye Teh Details
An Empirical Investigation of Representation Learning for Imitation, by Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H Wang, Ping Luo, Stuart Russell, Pieter Abbeel, Rohin Shah
Qatten: A General Framework for Cooperative Multiagent Reinforcement Learning, by Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, Hongyao Tang
Negotiating team formation using deep reinforcement learning, by Yoram Bachrach, Richard Everett, Edward Hughes, Angeliki Lazaridou, Joel Z. Leibo, Marc Lanctot, Michael Johanson, Wojciech M. Czarnecki, Thore Graepel
CoBERL: Contrastive BERT for Reinforcement Learning, by Andrea Banino, Tim Scholtes, Adrià Puidomenech Badia, Jovana Mitrovic, Jacob Walker, Charles Blundell
Stabilizing Transformers for Reinforcement Learning, by Emilio Parisotto, H. F. Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre, Siddhant M. Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, M. Botvinick, N. Heess, R. Hadsell
Causally Correct Partial Models for Reinforcement Learning, by Danilo J. Rezende, Ivo Danihelka, George Papamakarios, Nan Rosemary Ke, Ray Jiang, Theophane Weber, Karol Gregor, Hamza Merzic, Fabio Viola, Jane Wang, Jovana Mitrovic, Frederic Besse, Ioannis Antonoglou, Lars Buesing Details
Discovering Reinforcement Learning Algorithms, by Junhyuk Oh Matteo Hessel, Wojciech M. Czarnecki, Zhongwen Xu, Hado van Hasselt, Satinder Singh, David Silver Details
The Value-Improvement Path Towards Better Representations for Reinforcement Learning, by Will Dabney, Andre Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G. Bellemare, and David Silver Details
Plan2Vec: Unsupervised Representation Learning by Latent Plans, by Ge Yang, Amy Zhang, Ari S. Morcos, Joelle Pineau, Pieter Abbeel, Roberto Calandra Details
Behaviour Suite for Reinforcement Learning, by Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton, David Silver, Hado Van Hasselt Details
Artificial and Computational Intelligence in Games: Revolutions in Computational Game AI, by Jialin Liu, Tom Schaul, Pieter Spronck, and Julian Togelius Details
Leverage the Average: an Analysis of Regularization in RL, by Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, Matthieu Geist Details
2020-04-08: Today we share a podcast of Csaba Szepesvari:
Csaba Szepesvari of DeepMind shares his views on Bandits, Adversaries, PUCT in AlphaGo / AlphaZero / MuZero, AGI and RL, what is timeless, and more! Details